

Research models and target identification in oncology

Julia Schüler

- Intro drug development process
- Available in vivo models
- Example study PDX
- 04 Example study mouse tumor model

Intro drug development process

Conversion rate in oncology

adapted from: Bhattacharjee Y (2012) Biomedicine. Science 338: 29

Drug development process

R&D efficiency and effectiveness in oncology

*Zurdo J et at al, pharmaceutical Bioprocessing, 2013

*Lansdowne LE et at al, https://www.technologynetworks.com/; 2020

Drug development process

Available in vivo models

Use of animals/mice in the oncology drug pipeline

*James E. Talmadge Am J Pathol. 2007 March; 170(3): 793–804.

charles river

Platforms reflect key Oncology trends

Different animal models in drug discovery

Immunity is key Different mouse strains for different questions

	Immuno	deficient	
	Non Humanized	Humanized	Immunocompetent
Cells	Human xen	ograft (CDX)	Mice allograft (syngeneic CDA)
(
Fragments	Human frag	ments (PDX)	Mice GEM fragments (GDA)
Fragments	Human frag	ments (PDX)	Mice GEM fragments (GDA)
Fragments Spontaneous	Human frag	ments (PDX)	Mice GEM fragments (GDA)

Suitability of the model for

Cytotoxic or targeted agents

Immune-modulating agents

Immunodeficient mice and rats

Model features and degree of immunodeficiency

				МІ	CE				RA	ATS
	NSG	NRG	NODSCID	SCIDbeige	SCID	B6Rag1	Inbred nude	Outbred Nude	SRG	RNU nude
Mature B cells	Absent	Absent	Absent	Absent	Absent	Absent	Present	Present	Absent	Present
Mature T cells	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
Dendritic cells	Defective	Defective	Defective	Present	Present	Present	Present	Present	Present	Present
Macrophages	Defective	Defective	Defective	Present	Present	Present	Present	Present	Present	Present
Natural killer cells	Absent	Absent	Defective	Defective	Present	Present	Present	Present	Absent	Present
Hemolytic complement	Absent	Absent	Absent	Present	Present	Present	Present	Present	Present	Present
Leakiness	Very low	Absent	Low	Low	Low	Absent	N/A	N/A	Very low	Low
Radiation tolerance	Low	High	Low	Low	Low	High	High	High	High	High
Spontaneous tumor incidence (type)	Low	Low	High (thymic lymphoma)	High (thymic lymphoma)	High (thymic lymphoma)	Low	Low	Low	Low	Low
most								least		

Degree of immunodeficiency

Example study PDX

Patient derived xenograft - PDX

Current gold standard for preclinical drug development

PDX preserve tumor architecture

Histology and heterogeneity are preserved in PDX

0 100 200 300 400 500

*Schueler et al, Oncotarget 2018, 9; 57; p.30946-30961

PDX represent (largely) the molecular landscape

*Schueler et al, Oncotarget 2018, 9; 57; p.30946-30961

PDX and the tumor microenvironment

human tumor cells interacting with the murine host

17

PDX for drug development

Tumor growth over time of NSCLC PDX model under treatment with 3 different targeted agents

Tumor growth over time of CTC PDX model under treatment with combination SoC

 Control Vehicle FOLFIRI

CXF 280

2000

1500

*Schueler et al, Cells 2019, 8, 740

Model selection for drug testing

breadth and depth of the collection is key

Model selection for drug testing

Identify models that express your target (or not)

Tissue microarrays for model selection

In vitro screening

Determine activity and specificity

In vivo screening

Screening of seven EGFRi across 169 subcutaneously implanted PDX models in vivo

correlation of in vivo sensitivity to EGFR protein expression

EGFR expression determined by IHC

Biomarker identification

Meta data association of categorical values

Example study mouse tumor model

Pre-Clinical in vivo Models for Immuno-Oncology

<u>GEMMs & syngeneic models</u> Pro`s

Complete immune system Immune & tumor cells from the same host Preserved tumor development

Humanized mice

Pro`s

Human tumor cells Human immune cells Preserved Tumor heterogeneity

Con`s

Murine tumor cells Murine immune cells

Con`s

Chimeric organism (still) incomplete immune system

Syngeneic mouse models

Characterized by

molecular phenotype (WES and RNAseq) efficacy testing towards CPi

Syngeneic Models

Established models by CHK-i response

RESPONSIVE

HISTOTYPE	CELL LINES
Colon	Colon26, CT26, MC38
Lymphoma	A20
Brain	GL261
Bladder	MBT-2

days after start of treatment

MODERATE RESPONSIVE

HISTOTYPE	CELL LINES
Breast	EMT-6
Lymphoma	E.G7-OVA
Melanoma	CloudmanS91
Pancreatic	Pan02-HA
Renal	Renca

days after start of treatment

REFRACTORY

HISTOTYPE	CELL LINES
Breast	4T-1
Lung	Lewis Lung, Madison 109
Melanoma	B16F10
Pancreatic	Pan02

Combination therapy screen in vivo

Synthetic lethality

Checkpoint inhibition

Combination therapy screen in vivo

Lack of preclinical model for combination therapy

GEM

model

Innate immune system Intact tumor stroma Orthotopic tumor growth Defined molecular subtypes Limited intratumor heterogeneity

Native vasculature

Murine vasculature Severely limited immune system Admixed murine/human stroma Mostly orthotopic implantation Full range of molecular subtypes Higher intratumor heterogeneity

PDX model

lack of BRCA mutated model

lack of fully functional immune system

Creation of homozygous EMT6 BRCA1 ko line

Generation of a Brca1 knock-out in mouse breast cancer cell line EMT6 mice using the HDR pathway

Basic tumor biology characteristics

Subcutaneously implanted into female balb/c

Basic tumor biology characteristics

of CD45+ cells of CD45+ cells 45-45 40-40-35-30-25 · 35 % positive cells --30-25-..**5**-20-15-1.0-Β 10-Π -0.5-5-**0**.0-0empsc mmosc CD8^{*}Cells CD45* wi M2 Sc CD4* CDA5* 2th

tumor infiltrating lymphocytes

cytokine profile

EMT6 BRCA1 KO

EMT6

multiplerit-test's

Phenotypic differences EMT6 vs EMT6 BRCA1 KO

- The creation of a murine breast cancer cell line bearing a homozygous frame shift mutation was successfully conducted.
- The comparison of the mutated vs the wt EMT6 cell line in vivo revealed significant differences in the tumor doubling time. The mutated cell line grew significantly slower (1.96 ± 0.38 vs 1.61 ± 0.37 d).
- The histological architecture was similar in both lines, depicting an undifferentiated carcinoma.
- The percentage of tumor infiltrating lymphocytes (TILs) was similar for CD45 (determined by FC and IHC).
- The subtyping of TILs revealed higher percentages for gMDSC and M2 macrophages in the EMT6 BRCA1 KO line. Nevertheless, those differences were not statistically significant.
- The cytokine profile of the two lines differed significantly with higher cytokine levels of 22/23 analytes in the nonmodified cell line. G-CSF is the only determined cytokine expressing higher levels in the serum of EMT6 BRCA1 KO animals.

Treatment regimen & study layout

		Dose		Schedule
	Agent	[mg/kg]	Route	[d]
	vehicle	10 ml/kg	ро	0-21
	Rucaparib	150	ро	0,7,14,21
	Talazoparib	0,3	ро	0-21
	Olaparib	50	ро	0-21
llr	Niraparib	100	ро	0-21
	anti-CTLA-4	5	ір	0,3,6
	anti-PD1	5	ір	4,8,11,15

Read out:

- Tumor volume over time
- TIL analysis at end point
- Cytokine analysis in serum under treatment

Sensitivity towards PARPi in monotherapy

days after start of treatment

- ----- Control Vehicle
- ----- Olaparib 50 mg/kg/d
- ----- Niraparib 100 mg/kg/d
- ----- Rucaparib 150 mg/kg/d
- ----- Talazoparib 0.3 mg/kg/d

Sensitivity towards CPi in monotherapy

Control Vehicle

- ---- anti PD-1 5 mg/kg/d
- ----- anti CTLA-4 5 mg/kg/d

Overview monotherapy

38

Combination therapy PARPi and CPi

Comparison of PARP inhibitors in absence and presence of a BRCA1 KO

Combination therapy with talazoparib

Overall survival in EMT6 BRCA1 KO

*p< 0.011; Log-rank test

Combination therapy with Rucaparib

Overall survival in EMT6 BRCA1 KO

***p< 0.004; Log-rank test

Overview combination therapy

PARPi and checkpoint inhibitors in a syngeneic breast cancer model

TIL analysis of EMT6 BRCA1 KO

Influence of different treatments on composition of diverse TIL subpopulations

Kruskal-Wallis test

TIL analysis of EMT6

Influence of different treatments on composition of diverse TIL subpopulations

TIL analysis of EMT6 BRCA1 KO

Further subtyping of TILs under treatment

TIL analysis of EMT6

Further subtyping of TILs under treatment

Cytokine secretion under therapy

EMT6 and EMT6 BRCA1 KO show distinct cytokine profile under therapy

Talazoparibanti CTLA-4

- Talazoparib + anti CTLA-4
- 🗖 anti PD-1

Talazoparib + anti PD-1

Conclusion

- Talazoparib was the most active compound in the EMT6 BRCA1 KO model, followed by Niraparib and Rucaparib. Olaparib was considered inactive.
- The EMT6 model was resistant against all tested PARPi.
- The EMT6 BRCA1 KO model turned out to be sensitive towards anti CTLA-4 treatment but showed mild tumor growth delay under anti PD-1 treatment in monotherapy.
- The EMT6 model was sensitive towards both checkpoint inhibitor treatments.
- Combination therapy was more effective in all tested settings. However, Rucaparib + anti CTLA-4 as well as Talazoparib + anti-PD-1 induced a significant prolongation of the life span of the treated animals.
- TIL analysis revealed that significant differences under different treatment regimen specifically in the EMT6 BRCA1 KO model.
- The secreted cytokine profile supported the TIL data by upregulation of multiple pro-inflammatory cytokines specifically in the EMT6 BRCA1 KO line. In contrast, none of the treatment regimen had a major impact on the cytokine profile of EMT6 bearing mice.

summary

- In vivo models in oncology are a key component for the drug discovery process.
- No model is a perfect fit throughout the drug development workflow.
- Each scientific question can be addressed with a specific *in vivo* model.
- The introduction of genome editing technologies such as the CRISPR/Cas9 system reduced cost and time for the generation of a broad range of preclinical models.

In the end

The choice of your model depends on the scientific question

The quality of the results is indispensably related to the quality of your experiment

QUALITY ASSURANCE

The read-out and interpretation of your data must withstand clinical requirements

"Data don't make any sense, we will have to resort to statistics."

